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prescriptions 
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t physics Department, University of Athens, Greece 
$ Institute of Mathematics, University of Athens, 57 Solonos str, Athens 106 79, Greece 

Received 27 October 1986 

Abstract. In the present letter we show how the phase space quantisation approach can 
be fulfilled via the collective behaviour of quantum mechanical particles on a cubic lattice. 

One of the most interesting approaches to the quantisation problem is that which 
formulates itself on the phase space of the physical system under consideration. Such 
a formulation is based on the observation made by several authors [l-51 who have 
suggested a quantisation mapping adhering to the form 

f=ix,+f-p aflap-q af/aq (1) 

where X, is a tangent vector on phase space associated with the function f for some 
vector field X [6,7]. 

Specific realisations of quantisation mappings resulting from the general prescrip- 
tion given by (1) are the following. 

(i)  Van Hove's [ 1,5] mapping 

6 = q + i h a/ ap 

k = -ih a/aq (2b) 

(2a)  

or its improved form [8] 

Q=fq+i t r  a/ap 

P = -2ih alas. 

o = i h  a/ap+tq 

B =  -ih a/aq+ip. 

(ii) The symmetric quantisation mapping [2,3,4,8] 

There are various reasons why the above prescriptions might be advantageous with 
respect to the conventional quantisation mapping (see references [ 1-81 and also 
Chemoff [9]). 

In recent papers [8,10,11] we have arrived at several new realisations regarding 
phase space quantisation (for non-relativistic systems), on the basis of certain connec- 
tions we were able to make among the various approaches contained in [l-71. The 
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basic picture emerging from our work so far is consistent with the view that phase 
space quantisation amounts to a coherent superposition of conventional quantum 
states. This is implicit in the approach to quantisation advocated by PrugoveEki and 
collaborators [5,  121. Their basic idea is to exploit the Van Hove quantisation rule 
(2a), ( 2 6 )  in order to attain optimum localisability of a quantum mechanical particle. 
This, in turn, leads to a stochastic formulation of quantum mechanics. 

From our viewpoint a scheme which employs states of minimum uncertainty, such 
as the one of PrugoveEki, should exhibit common characteristics with schemes employ- 
ing coherent states. In fact, we have been able to show [8] that the stochastic approach 
can be reformulated in terms of a space of states on phase space which employs for 
its inner product a density function p(q ,  p )  of the form 

p(q ,  P) = exP[-4q2+P2)1 ( 5 )  

where a is a constant to be fixed by appropriate normalisation. Such a density function 
has been introduced by Bargmann [13] in his work on coherent states. 

In the present letter we shall explicitly display the coherence content of the stochastic 
quantisation scheme through a specific model which is widely employed in solid state 
physics. In particular, we shall consider a cubic crystal lattice on each site of which 
resides an electron. Our aim is to show that the description of the system as a whole 
is attained within the context of the stochastic approach to quantisation. Specifically, 
we shall establish a connection between the Bloch functions of solid state physics, 
employed to describe the electronic lattice, and the phase space functions of stochastic 
quantisation. PrugoveEki’s stochastic quantisation scheme begins with the observation 
that any quantisation prescription associated with the mapping (2a), ( 2 6 )  is highly 
reducible on the space of square integrable functions on phase space r. To this end 
he employs a function t ( x )  which generates a family {&,} through its Galilean phase 
space translations, such that { &,(x)} constitutes a continuous resolution of the identity 
in L 2 ( R 3 ) .  Formally we write 

In this way one arrives at a subspace Ts of phase space [12], the square integrable 
functions which provide a space of states L 2 ( r , )  carrying an irreducible representa- 
tion of Van Hove’s mapping ( 2 a ) ,  ( 2 6 ) .  Presumably, other mappings resulting from 
( 1 )  can be similarly accommodated by appropriate phase space constructions. 

The fact that the family {t,,,} I .solves the identity enables us to expand the phase 
space state function q ( p ,  q )  E L’(! ,) as follows: 

Now, according to what we have said before, t,,,(x) results from Galilean translations 
of a generating function [(x). Thus we have 

(8) 

We note, in passing, that similarly constructed functions have also been employed by 
Davies [14] in order to discuss observables on phase space. 

Clearly, there is a multitude of choices for the generating functions ((x). In this 
letter we shall arrive at particular choices for t ( x )  dictated from a solid state theoretical 

t p p . , ( x )  = exp(iiJ x)5(x - 4). 
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model. Specifically, we shall consider an electronic cubic lattice which is conven- 
tionally described by the so-called Bloch functions. 

In order to introduce the lattice structure into our considerations we give the 
following structure to *(x), entering (7) ,  

q ( x ) = C  6 ( x - I )  ( 9 )  
I 

where XI extends over the points of the cubic lattice in space. Substituting in (7)  
we obtain 

*(P, 4 )  = c t P , J U  (10) 
I 

and by appealing to (8) we finally obtain 

q ( p ,  q )  = eiP”[(l- 4). 
I 

Let us now suppose that [(x) corresponds to a wavefunction for a given particle 
on the lattice. It will have, in general, an expansion in terms of an orthonormal set 
{+,,(x)} of eigenfunctions of a certain Hermitian operator, say the Hamiltonian. In 
other words we can write 

In the above expression we recognise the Bloch functions which describe the 
electronic lattice. Conventionally these functions are given as follows: 

where N is the number of points in the lattice and the set +,,(x) is complete and 
normalised, but not necessarily orthogonal. 

It is certainly interesting that a highly general consideration pertaining to phase 
space quantisation has resulted in a formulation which is widely employed in an 
applied branch of modern physics. Clearly, the model input to our considerations 
comes through relation (9) ,  which introduces a particle at each site of the lattice. From 
our viewpoint the above result is consistent with the coherence interpretation of 
stochastic quantisation which, for the particular model examined, enters via the 
collective behaviour of the particles on the lattice. 

We are now in a position to comment on the nature of the functions [(x) which 
generate the space carrying an irreducible representation of Van Hove’s commutation 
relations. It becomes obvious from (12) that , $ ( I -q )  is a square integrable function 
which coincides with a wavefunction for the particle situated at the lattice point 1. We 
thereby realise that the mathematically meaningful space L*(T,) which carries an 
irreducible representation of Van Hove’s commutation relations is generated from the 
physically meaningful function ,$(x) describing the state of a given particle on the lattice. 
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Actually, the description of [(x) in terms of a single particle on the lattice is best 
attained through the so-called Wannier functions. The latter are truly localised about 
each electron and at the same time they constitute a complete orthonormal basis. This 
property of the Wannier functions is connected to the fact that they are associated 
with an effective Hamiltonian which localises the effects of the whole lattice on each 
particle. Thus our interpretation of the [(x) as a function referring to a single particle 
on the lattice is fully realisable. 
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